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NATIONAL AERONAUTICS AND SPACE ADMINISTR4TION 

TECHNICAL NOTE D-318 

A WIND-TUTVNXL INVESTIGATION OF THRlZE PROPEIJXRS 

THROUGH AN ANGLE-OF-ATTACK RANGE 

FROM oo TO 85' 

By Paul F. Yaggy and Vernon L. Rogallo 

SUMMARY 

A n  investigation of propeller performance, including in-plane forces ' 
and out-of-plane moments, has been made for three propellers operating 
through a range of thrust-ads angles of a t tack from Oo (horizontal) t o  
85'. The operating conditions were selected t o  simulate those anticipated 
f o r  VToL/STOL a i r c r a f t  i n  the  take-off, landing, and t rans i t ion  regimes. 
The propellers differed widely i n  plan form and included one with flapping 
hinges . 

The resu l t s  of the investigation revealed t h a t  for  a l l  three p r q e l -  
l e r s  similar variations i n  the forces and moments with thrust-axis amgle 
of a t tack and advance r a t i o  were present. Further, the thrus t  and power 
were nearly constant and in-plane forces and out-of-plane moments 
increased approximately l inear ly  over large ranges of thrust-axis angle 
of a t tack f o r  constant blade angles and effect ive advance ra t ios .  

INTRODUCTION 

Operation of a propeller i n  an unsymmetrical flow f i e l d  i s  known t o  
produce osc i l la t ing  air  loads on the propeller blades which, i n  turn,  
produce propeller shaft  in-plane forces and out-of-plane moments. 
f l o w  f i e l d  asymmetries result, generally, from e i the r  t h r u s t - a d s  tilt or 
from flow angles induced by the airplane l i f t i n g  surfaces. 
on VTOL/STOL-type aircraf t  w i l l  encounter greater asymmetries than those 
on conventional a i r c ra f t ,  e i t he r  because of large angles of thrust-axis 
tilt (ti l t ing-wing or t i l t ing-propel ler  types),  or because of t he  induced 
upwash of high l i f t  devices (vectored slipstream types).  Since the blade 
loads largely d ic ta te  the  propeller design and the forces and moments are  
significant i n  terms of airplane s t ab i l i t y  and control, a knowledge of 
the  magnitudes of these parameters through a large range of thrust-axis 
tilt angles i s  required t o  es tabl ish design c r i t e r i a .  

The 

The propellers 

Previous investigators ( re f .  1) have presented the aerodynamic 
character is t ics  of a specific,  l i gh t ly  loaded propeller over a very wide 
range of operating conditions. The present investigation w a s  directed 
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toward more heavily loaded, higher s o l i d i t y  propel lers  operating a t  lower 
advance r a t io s  and high tilt angles, t h a t  i s ,  conditions expected t o  be 

regimes. 
design over a range of thrust-axis  angles of a t tack  from 0' t o  8 5 O  and 
advance r a t i o s  ranging from 0 t o  1.8. The tes ts  were conducted i n  the  

typ ica l  of VTYlL/STOL a i r c r a f t  i n  t h e  take-off, t r ans i t i on ,  and landing * 
T e s t s  were made of th ree  fu l l - sca le  propel lers  of d i f fe ren t  
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40- by 80-~oo t  Wind Tunnel. 

NOTATION 

number of blades 

propeller blade chord, f t  

Rbr%r 

l R r 2 d r  

prop e l l e  r equivalent c hord , 9 f i  

propeller blade design section l i f t  coeff ic ient  

M pitching-moment coeff ic ient ,  - 
pn2D5 

N normal-force coeff ic ient ,  - 
pn2D4 

power coeff ic ient ,  2 S Q  

torque coeff ic ient ,  - Q 
pn2D5 

S side-force coeff ic ient ,  - 
pn2D4 

T t h rus t  coeff ic ient ,  - 
pn2D4 

yawing-moment coeff ic ient ,  - 
p n q 5  

propeller diameter, f t  

Y 

maximum thickness of propel ler  blade section, f t  

propeller advance r a t i o  based on streamwise component of veloci ty ,  

propel ler  advance r a t i o  based on veloci ty  component normal t o  pro- 
V,cos a pe l l e r  disk,  n D  
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propeller pitching moment, f t - l b  

propeller normal force, lb 

propeller rotat ional  speed, rps 

propeller torque, f t - l b  

blade section radius, f t  

propeller t i p  radius, f t  

propeller side force, l b  

propeller th rus t ,  l b  

veloci ty  of free-stream tunnel a5r stream, a s  

r f rac t ion  of propeller t i p  rad ius ,  - 
R 

propeller p a n g  moment, f t - lb  

angle of a t tack measured from longitudinal tunnel axis t o  propeller 
shaf t  axis ,  deg 

propeller blade angle measured a t  the 0.75 R, deg 

CT 
CP 

propeller efficiency based on free-stream tunnelve loc i ty ,  J - 

m a s s  density of air ,  slugs/cu f t  

Bee weighted propeller sol idi ty ,  - 
XR 

The posi t ive directions of the propeller forces and moments a re  
indicated on figure 1. 

MODEL AND APPARATUS 

Propellers 

The propellers selected fo r  the  investigation were great ly  d i f fe ren t  
i n  both aerodynamic and s t ruc tura l  design. Propeller 1 w a s  of conven- 
t i o n a l  design; propeller 2 was designed t o  produce large normal forces 
with reduced shaft moments; and propeller 3 was an a r t icu la ted  (flapping 
out-of -plane only) propeller designed t o  eliminate shaft  moments . The 
physical character is t ics  of these propellers a re  l i s t e d  i n  the following 
tab le  : 
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Diameter 
Number of blades 
Blade con s t  ruct ion 

Airfoi l  sections 
Blade designation 
Activity factor/blade 
Flapping hinge of fse t  

No. 1 
Curtiss C ~ ? ~ S - C ~ O O  Propeller - 

12.0 f e e t  
3 

Hollow s t e e l  

NACA 16 ser ies  
838- 7c4-36 

150 --- 

No. 2 
Curtiss C ~ ~ ~ S - C ~ O O  

10.0 f e e t  
3 

Fib  e rgla  s 

NACA 64 ser ies  
no0188 

188 --- 

No. 3 
V e r t 0 1  76 
9.5 f ee t  

3 
Wood and 

s t e e l  
NACA 0009 
~ 7 6 ~ 1 0 0 2  

178 
3 inches 

Blade plan-form curves f o r  the three propellers a re  presented i n  
figure 2. 

Testing Apparatus 

For the t e s t s ,  t he  propellers were mounted on the  propeller t e s t  
stand i n  the Ames 40- by80-Foot Wind Tunnel, as  shown i n  figure 3. 
c ipa l  features of this  stand are: 

Prin- 

a 
1. The shroud i s  isolated from the wind-tunnel balance system so t h a t  

only propeller forces and moments a re  measured. 

2. Wide ranges of power and rotat ional  speed are  possible through the 
use of proper motor and reduction gear combinations. 

3. The angle of the thrus t  axis can be varied continuously from OG 
t o  85O and 180° t o  95' ( the l a t t e r  by mounting the  propeller i n  a reversed 
position). 

I n  s t  m e n t  at  ion 

The blades of each propeller were equipped with s t r a in  gages which 
Thus, the  maximm range of 

All conditions f o r  which 

permitted monitoring of the blade s t resses .  
t es t  variables a s  limited by s t r e s s  w a s  investigated; however, no attempt 
w a s  made t o  study the blade-stress problem. 
data  are presented i n  t h i s  report were within the  safe operating l imi t s  
specified by the  manufacturer. 

Power input t o  the propeller was measured by means of wattmeters i n  & 
t he  supply l i nes  t o  the  e l ec t r i c  motors. 
f o r  drive system losses and, hence, represent the t r u e  power input t o  the  

These wattmeters were calibrated 

propeller. 9 

Six-component force data were measured by the  wind-tunnel balance 
system upon which the tes t  stand was mounted. 



TESTS 

S ta t ic  Tests 

A 
2 
6 
7 

Lr' 

3 . 

Data f o r  conditions of zero advance r a t i o  were obtained fo r  
propellers 1 and 2. The t e s t  stand was positioned a t  the maximum angle 
of a t tack,  as  shown i n  figure 3(a) ,  and the  tunnel access doors (essen- 
t i a l l y  the  en t i re  upper half of the  t e s t  section) were open t o  the large 
t e s t  chamber which formed a plenum chamber. 
c ien t ly  f a r  removed from the f loor  that  there  was no appreciable ground 
ef fec t .  
assured t rue  s t a t i c  conditions. 

The propeller w a s  suffi- 

This technique prevented recirculation of flow i n  the  tunnel and 

Tests at Forward Velocit ies 

Two different techniques were employed i n  obtaining data at  forward 
velocity. 
tunnel a i r  veloci ty  were held constant w h i l e  the  blade angle and rota- 
t i o n a l  speed of t he  propeller were varied. 
velocity,  blade angle, and ro ta t iona l  speed w e r e  held constant while t he  
thrust-axis mgle of at tack wits varied. A comparison of the  results of 
these two techniques revealed no perceptible differences i n  the  data which 
could be a t t r ibu ted  t o  the techniques themselves. 
the  ranges of variables for propellers 2 and 3 a re  considerably smaller 
than f o r  1 because of s t ruc tura l  l imitations of the  propeller blades. 

For prupellers 1 and 2 t h e  thrust-axis angle of attack and 

For propeller 3 the  tunnel air  

It w i l l  be noted that 

Reduction of D a t a  

Although s i x  components of forces and moments were measured, only 
f ive  a re  presented since the propeller side forces were found t o  be 
neg1igible.l 
magnitude as  the minimum value which could be sensed by the  measuring 
device, producing a great deal  'of scat ter  i n  the resul ts .  
pitching-moment variations were obtained by a somewhat indirect  method, 
but one considered t o  give accurate values. 
assumption t h a t  the maximum value of shaft moment occurs simultaneously 
with the  response of the propeller blade t o  the maximum load. With this 
assumption, which i s  i n  accord with limited unpublished data, it i s  nec- 
essary only t o  know the yawing moment and i t s  phase angle re la t ive  t o  the 
azimuth angle a t  which maximum loading occms i n  order t o  obtain the 
pitching moment, since yawing and pitching moments a re  simply components 
of the  t o t a l  shaft  moment. 
measured yawing moment and the phase angle as determined from the blade- 
s t r e s s  records. 

t rue.  

The values of the pitching moment were of the  same order of 

Therefore, the  

This method required the 

This procedure was  followed, using the 

1It should be noted tha t  fo r  a propeller i n  yaw t h i s  would not be 
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It should be noted that no var ia t ions of yawing moment and pitching 

moment are presented f o r  propeller 3 since the  a r t icu la t ion  essent ia l ly  
reducedthese shart  moments t o  zero. # 

No corrections f o r  tunnel w a l l  constraint  have been applied t o  the 
data. However, these corrections a re  believed t o  be very small because 
of t he  large r a t io s  of tunnel cross-sectional area t o  propeller disk areas.  
Flow surveys a t  the  plane of the  propeller (propeller removed) indicated 
no significant induced inflow angles due t o  the  presence of the  t e s t  stand 
shroud; hence no stream angle corrections were applied. 

Numerous data points were obtained during the  t e s t s  but it w a s  imprac- 
t i c a l  t o  show each point on the  plots .  
presented t o  indicate the accuracy of -the measurements on the basis  of the  
greatest deviation of t e s t  points from the faired curves. 

The following data a re  therefore 

+8 percent 
+7 percent 
29 percent 
?9 percent 

Cm +9 percent 

CT 
CP 
CN 
CY 

It i s  emphasized tha t  these are  m a x i m u m  deviations, the  average deviations 
being much l e s s  than these indicated values. 

All moments presented a re  referred t o  the intersection of the  thrus t  
axis  and the  propeller plane. 

RESULTS AND DISCUSSION 

As w a s  noted i n  the introduction, it i s  expected t h a t  the r e su l t s  of 
this study w i l l  be of par t icu lar  i n t e re s t  i n  defining propeller perform- 
ance and the  d i rec t  e f fec t  of the  propeller on s t a b i l i t y  and control during 
the  t ransi t ion f l i g h t  phase of VTOL/STOL a i r c ra f t .  
here as t ha t  f l i g h t  phase lying between pure hover, or s l o w  ve r t i ca l  f l i g h t ,  
and conventional a i r c r a f t  f l igh t ;  i n  this region the  propeller might be 
expected t o  operate a t  low forward ve loc i t ies  and large angular inclina- 
t i ons  to  the  air stream. 

Transition i s  defined 

To examine the above-mentioned ef fec ts  i n  d e t a i l  requires specifica- 
t i o n  of a par t icular  vehicle and i s  beyond the  scope of t h i s  report; the  
primarypurpose here i s  t o  make available the information necessaiy f o r  
such an analysis. However, cer ta in  generalizations can be made regarding 
propeller character is t ics  l i k e l y  t o  be encountered i n  t rans i t ion  f l i g h t  

of propeller l w i l l b e  used t o  i l l u s t r a t e  these generalizations, the  same 
conclusions could be drawn from examination of data from the studies of 
e i ther  of the other two propellers. 

Y 

and it i s  proposed t o  discuss these br ie f ly .  Although data from the  study rr 
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Five-component data for propeller 1 have been plot ted as  a function 
of a modified advance ra t io ,  J' (V'/nD where V f  = V,cos a)  for constant 
angles of attack2 and several blade angles and are shown i n  figures 4 
through 8. Several interest ing conclusions can be drawn from examination 
of these figures. 
f o r  a l l  f ive  components increase with increasing angle of attack. 
it i s  noted tha t  the slopes increase with disk loading (increasing 
a l l  but t he  pitching moment which increases t o  j3 = 8' and slowly decreases 
thereaf ter .  
values of a of 45O,  a f t e r  which the  changes become quite rapid. Further, 
these changes i n  slope a re  more rapid a t  higher values of 
lower values. 

F i r s t ,  it w i l l  be noted t h a t  the  slopes of the  curves 
Second, 

p)  f o r  

Third, only moderate changes i n  slope a re  indicated up t o  

than a t  J' 

A 
2 

7 

From figures 4 through 8, data were selected a t  constant values of 
r J' and P 

Cm) with thrust-alds angle of a t tack.  Values of p equal t o  12' and 30° 
w e r e  selected t o  show the  e f fec t  o f  increased disk loading. These results 
are presented i n  figures 9 through 13.  It i s  evident from figures 9 and 
10 t h a t  the  thrus t  and power variations have nearly zero slope over con- 

(r' siderable ranges of a a t  low values of J* and t h a t  t he  range of zero 
slope becomes l e s s  with increasing Jf. Further, f igures 11 through 13 
show t h a t  over these ranges where the  variations have nearly 
zero slope, variations of CN, Cy, and Cm have nearly a constant slope. 
An exception i s  the variation of CN a t  j3 = 30° and small values of J'. 
This i s  a range of low propeller efficiency where large osc i l la t ing  torques 
produce nonlinear variations.  

t o  show the variations of the f ive  components (CT,  Cp, CN, Cy, 1 

CT and C p  ';I 

Certain other f ac t s  revealed i n  figures 9 through 13 are  worthy of 
note. 
as a i s  increased i s  evident for a l l  values of J'. This break occurs 
a t  progressively lower values of a as J' i s  increased. The posit ion 
of t h i s  break i s  not largely affected by increasing 
disk loading) from 12' t o  30'. 

A break from near l i nea r i ty  i n  the variations of a l l  f ive  components 

p (and thereby the  

Viewing these observations from the standpoint of VTOL operation, it 
can be demonstrated t h a t  cer ta in  t ransi t ion programs can l i e  within the 
regions of l inear  slope f o r  the propeller forces and moments. 
a t  which the thrust  curves show a deviation of about 5 percent from the 
value a t  
(V, = Jf KID/COS a) and a can be established as  shown i n  figure 14. To 
simplify the i l l u s t r a t i o n  the  boundary has been determined f o r  constant 
values of ,t3 ( the boundary i s  the  sane f o r  j3 of 12O and 30') and a typ- 
i c a l  value of nD, a s  dictated by blade t i p  speed. 

I f  the  point . 

a = 0' i s  taken as a l i m i t i n g  condition, a boundary of airspeed 

J 

It should be noted tha t  f o r  the  isolated propeller as  presented here, 2 

a i s  the  geometric angle of attack. However, f o r  airplane ins ta l la t ions ,  
t h i s  angle i s  often affected by wing induced flow, e t c . ,  and i s  the  effec- 
t i v e  angle of attack of the thrust  axis. See reference 3 f o r  considera- 
t i on  of t h i s  aspect of the problem. 
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Exanrples of two t r ans i t i on  programs are  a l so  shown i n  f igure  14: 

i s  f o r  the hypothetical airplane described i n  reference 2 and i s  based on 
the  data obtained f o r  propel ler  1; the  other i s  for t he  Vertol  Model 76 
airplane and i s  based on data  obtained f o r  propel ler  3. Both a re  f o r  a 
1-g t ransi t ion,3 and it w i l l  be noted t h a t  both l i e  wel l  below the  bound- 
a ry  e w e .  

One 

T 

The significance of these f a c t s  i s  t h a t  the  th rus t  and power charac- 
t e r i s t i c s  of the  propel ler  f o r  the  two t r ans i t i on  programs, and any others 
lying below the  boundary, could have been closely approximated from data  
f o r  the propellers a t  a = Oo. Further, i f  data f o r  t he  in-plane forces  
and out-of-plane moments had been avai lable  a t  
a l inear  extrapolation based on these two values would have predicted these 
forces and moments with accuracy acceptable f o r  preliminary design pur- 
poses. 
a l l  three propellers tes ted ,  which were of widely d i f fe ren t  plan form and 
geometry. 
pe l l e r ,  t he  approach outlined i n  the  foregoing might be used t o  estimate 
the forces and moments at  large angles of a t tack from experimental data 
f o r  small angles of a t tack.  

a = Oo and, say, a = l?O, 

Similar conclusions can be drawn from examinations of t he  data f o r  

Therefore, i n  the  absence of complete data on a partic-ular pro- 

* 

A l l  the  data obtained f o r  the  three propel lers  a r e  shown i n  f igures  15 
These data a re  

e 
through 3 1  f o r  use i n  fur ther  evaluation of the  r e su l t s .  
presented i n  the  more conventional form of propel ler  parameter as a func- 
t i o n  of J' f o r  several  blade angles, a l l  a t  a constant value of a. 

CONCLUDING REp.Iw1KS 

It has been shown t h a t  the th rus t  and power coeff ic ients  f o r  given 
values of p and J' are  nearly constant i n  magnitude over a large range 
of thrust-axis angles of a t tack and t h a t  t h e  range diminishes with 
increasing J'. Also, over these same ranges of angles of a t tack,  the  
variations of propeller normal force,  yawing moment, and pitching moment 
a re  nearly l inear .  

The charac te r i s t ic  trends of the r e su l t s  (except those associated 
with blade a r t icu la t ion)  were the same f o r  a l l  three propel lers  tes ted .  

Y 

~~~ ~~ ~ 

3For conditions a t  high r a t e  of descent, t he  boundary could be 9 
exceeded by these airplanes.  Estimates for t he  hypothetical airplane of 
NACA TN 3304 showed t h a t  descent r a t e s  i n  excess of 2000 f'pm at  a t rans-  
la t iona l  speed of 36 knots would exceed the boundary. 



9 
2u 

v 

f 

A 
2 
6 
7 

w 

3 

A poss ib i l i t y  of predicting propeller forces and moments a t  high 
angles of a t tack and l o w  effect ive advance ra t ios ,  J ' ,  from data obtained 
a t  small angles of attack has been indicated. 

Ames Research Center 
National Aeronautics and space Administration 

Moffett Field, C a l i f . ,  Jan. 21, 1960 
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Figure 1.- Posit ive directions of propel ler  forces and moments. 
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A-24067.1 
(a) Propeller number 1, a = 8 5 O ,  

Figure 3,- Propeller and t e s t  stand instal led i n  the  Ames 40- by 80-Foot 
Wind Tunnel, 
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A-24306.1 * 
(b) Propeller number 2, a = 0'. 

Figure 3.- Continued. 
b 



3 

A-23635.1 

( c) Propeller number 3, a, = 0'. 

Wgure 3.- Concluded. 
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Figure 4.- Variation of th rus t  coefficient CT of propeller 1 with modi- 
f ied  advance r a t i o  J' f o r  severalthrmst-axis angles of attack a.  
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fied advance r a t i o  J' f o r  several blade angles P ;  CL = 30° and 4 5 O ,  
propeller number 3. 
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Figure 31.- Variation of the  propeller performance parameters with modi- 
f ied  advance r a t i o  J' for  several blade angles P; a, = 60°, 67.5O, 
and 7 5 O ,  propeller number 3. 
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